Identification and characterization of heterogeneous neuronal injury and death in regions of diffuse brain injury: evidence for multiple independent injury phenotypes.
نویسندگان
چکیده
Diffuse brain injury (DBI) is a consequence of traumatic brain injury evoked via rapid acceleration-deceleration of the cranium, giving rise to subtle pathological changes appreciated best at the microscopic level. DBI is believed to be comprised by diffuse axonal injury and other forms of diffuse vascular change. The potential, however, that the same forces can also directly injure neuronal somata in vivo has not been considered. Recently, while investigating DBI-mediated perisomatic axonal injury, we identified scattered, rapid neuronal somatic necrosis occurring within the same domains. Moving on the premise that these cells sustained direct somatic injury as a result of DBI, we initiated the current study, in which rats were intracerebroventricularly infused with various high-molecular weight tracers (HMWTs) to identify injury-induced neuronal somatic plasmalemmal disruption. These studies revealed that DBI caused immediate, scattered neuronal somatic plasmalemmal injury to all of the extracellular HMWTs used. Through this approach, a spectrum of neuronal change was observed, ranging from rapid necrosis of the tracer-laden neurons to little or no pathological change at the light and electron microscopic level. Parallel double and triple studies using markers of neuronal degeneration, stress, and axonal injury identified additional injured neuronal phenotypes arising in close proximity to, but independent of, neurons demonstrating plasmalemmal disruption. These findings reveal that direct neuronal somatic injury is a component of DBI, and diffuse trauma elicits a heretofore-unrecognized multifaceted neuronal pathological change within the CNS, generating heterogeneous injury and reactive alteration within both axons and neuronal somata in the same domains.
منابع مشابه
Neuronal injury and death following focal mild brain injury: The role of network excitability and seizure
Objective(s): While traumatic brain injury (TBI) is a predisposing factor for development of post-traumatic epilepsy (PTE), the occurrence of seizures following brain trauma can infuriate adverse consequences of brain injury. However, the effect of seizures in epileptogenesis after mild TBI cannot yet be accurately confirmed. This study was designed to investigate the ...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملPrognostic Serum Factors in Traumatic Brian Injury: A Systematic Review
Background & Aim: Traumatic brain injury is one of the main causes of death and disability. The aim of this study is to systematically review the articles which assessed some serum factors of traumatic brain injury patients in relation to their outcomes. Methods & Materials/Patients: Databases were searched for relevant publications from 2005 to 2014. Selection criteria were:Studies which ev...
متن کاملMelatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury
Objective(s):Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines...
متن کاملThe fate of neurons after traumatic spinal cord injury in rats: A systematic review
Objective(s): To reach an evidence-based knowledge in the context of the temporal-spatial pattern of neuronal death and find appropriate time of intervention in order to preserve spared neurons and promote regeneration after traumatic spinal cord injury (TSCI). Materials and Methods: The study design was based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-guided...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 14 شماره
صفحات -
تاریخ انتشار 2004